
Learning to Play Super Smash Bros. Melee with
Delayed Actions

Yash Sharma
The Cooper Union

ysharma1126@gmail.com

Eli Friedman
The Cooper Union

eliyahufriedman@gmail.com

Abstract

We used recurrent neural networks to teach a computer to play Super Smash Bros.
Melee in a more humanlike way. Previously, neural network agents have been
taught to play Super Smash Bros. on a competitive level with humans, but they were
"too good"–unrealistically so. The computers could react much faster than a human
ever could. However, when these agents were given human-like reaction speeds,
they performed much worse than humans. We propose a solution to this problem by
adding recurrence to the architecture, so that the computer could "remember" what
it saw a few frames ago and act appropriately even though its actions are delayed.
Our solution stabilizes the training of competitive agents under human-level delay,
as evidenced by qualitative and quantitative results against both the built-in AI and
other trained agents. With stronger training partners to play against, these agents
should eventually be able to beat the world’s best.

1 Introduction

Deep Learning has achieved wide success in many applications, particularly in utilizing convolutional
architectures for image classification. Neural networks have also had wide application in game-
playing, particularly in recent times. Games provide excellent testbeds for RL/AI algorithms. Even
as far back as the 1990s, agents have been trained to successfully play board games–the TD-Gammon
Tesauro [1994] agent plays Backgammon by using a neural network to approximate the value function,
yielding human-level performance. Most notably, AlphaGo Silver et al. [2016], in March 2016, was
able to defeat Lee Sedol, an 18-time world champion Go player, with a combination of deep neural
networks and tree search. For further information on applications of deep reinforcement learning in
games, please refer to Li [2017]

In previous work, Firoiu et al. [2017], deep reinforcement learning techniques were applied to Super
Smash Bros. Melee (SSBM). Released in 2001, SSBM still sports an active tournament scene and
fanbase. Players continue to increase in skill, in order to keep up with the evolving metagame. The
trained agents set the state-of-the-art in this environment, surpassing the abilities of ten highly-ranked
human players.

However, many who played against the agent felt as if the agent was taking advantage of its unrealistic
reaction speed: 2 frames (33ms), compared to over 200ms for humans. Despite it being quite apparent
that the AI had learned how to effectively utilize the game’s mechanics, its strategy did seem to be
dependent on successfully reacting in order to counter the opponent’s approach. Hence, by training
an agent to function under human-like delay, the playing field would be evened, and the model’s
performance could be more fairly evaluated.

Therefore, in an attempt to resolve the issue, the authors trained a network which took in observations
at previous frames as input, along with the actions taken on those frames. Employing this “stacking
frames” technique was sufficient to train fairly strong agents with delay 2 or 4, but performance
dropped off sharply at 6-10 frames. The authors suspected that the cause for this handicap is the



further separation of actions from rewards with delay, making it harder to tell which actions were
really responsible for the already sparse rewards.

In this paper, we propose an alternative to the “stacking frames” approach, by re-exploring the task
of training a competent recurrent agent. RNNs are not capable of fully remedying the issue with
separation, but can handle this better by factoring in temporal dependencies. We demonstrate much
improved training of an agent under significant delay, by evaluating the performance against the
built-in AI.

2 Recurrent Neural Networks

Before delving into the application, we felt it would be helpful to overview the particular neural
network architecture utilized here. Much of this section is derived from the DL4J guide to Recurrent
Networks and LSTMs. Please refer for further detail.

2.1 Recurrent Networks

In order to adequately understand recurrent networks, one first needs to understand the basics of
feedforward networks. In the case of feedforward networks, input examples are fed to the network
and transformed into an output.

Recurrent networks, on the other hand, take their input from both the actual input and the previous
output. The output of a recurrent network at time t is a function of both the input at time t and the
output of time t-1. See Figure 1 for two representations of a recurrent network.

Recurrent networks can be distinguished from feedforward networks by their feedback loop. By
ingesting their own outputs moment after moment as input, they can learn to remember past inputs.
This allows for RNNs to utilize contextual information in the sequence itself. The sequential
information is preserved in the recurrent network’s hidden state, which manages to span many time
steps as it cascades forward to affect the processing of each new example.

Figure 1: Unfolding of Recurrent Neural Network involved in Forward Computation

2.2 Vanishing (and Exploding) Gradients

Like most neural network architectures, recurrent networks are not a novel concept. By the early
1990s, the vanishing gradient problem emerged as a major obstacle to recurrent network performance.
When one feeds the gradient back through a recurrent neural network for many time steps, the
gradient is multiplied by the same weight matrix multiple times. If the singular values of the weight
matrix are less than one, then the gradient will tend to die out as it travels back through the network.
If the singular values are greater than one, the gradient will tend to rapidly increase. Either way,
learning becomes very difficult for recurrent networks unrolled over many time steps.

2



2.3 LSTMs and GRUs

In the mid-90s, a variation of recurrent net with so-called Long Short-Term Memory units, or LSTMs,
was proposed as a solution to the vanishing gradient problem Hochreiter and Schmidhuber [1997].

LSTMs propagate the internal state forward using a unit weight connection, so that the state neither
vanishes nor explodes as it propogates forward. LSTM units also feature learnable gates, so that the
network can learn whether to forget the internal state, or allow it to be influenced by the input. The
gates allow the LSTM unit to act as a memory cell that the network can write to, read from, or simply
remember a value.

The diagram provided (See Figure 2) illustrates how data flows through a memory cell and is
controlled by its gates.

Figure 2: LSTM Diagram

Starting from the bottom of the cell, the triple arrows indicate that information flows into the cell
from multiple points. The combination of present input and past state is fed not only to the cell itself,
but also to each of its three gates, which will decide how the input will be handled.

The black dots are the gates themselves, which determine whether to let new input in (input gate),
erase the present cell state (forget gate), and/or let that state impact the network’s output at the present
time step (output gate).Sc is the current state of the memory cell, and gyin is the current input to
it. Each gate can be open or shut, and each gate will recombine their open and shut states at every
timestep. The cell can forget its state, or not; be written to, or not; and be read from, or not, at each
time step, and those flows are represented here.

A Gated Recurrent Unit, or GRU, is basically an LSTM cell without an output gate, therefore fully
writing the contents from its memory cell to the larger net at each time step. There have been studies,
such as Steckelmacher and Vrancx [2015], which have indicated that for Reinforcement Learning
applications, GRUs might perform better, which is why they were utilized in our implementation.

3



3 Resolving the Action Delay Problem

We delayed our agent’s actions by d time steps, so that at time t, the agent would choose an action
that would be executed at time t+d. The addition of recurrence allows the agent to learn about the
temporal dependency between observations and actions at different times. This helps it learn what
action it should perform d time steps from now.

We set the agent so that it would only choose a new action every 3 frames. This value was estimated
based upon the length of the character’s short hop, which is a game mechanic absolutely essential
for high-level competitive play. We set d to be 12 frames, since human-level delay is approximately
between 12-15 frames.

In theory, a recurrent neural network should be able to handle any amount of delay. The challenge
however is to stabilize the training process of the network, so choosing the right hyperparameters
becomes a crucial task.

4 Actor Critic vs Q-Learning

In Firoiu et al. [2017], the authors used two main classes of model-free RL algorithms, Q-learning
and policy gradients, in order to learn the agent’s policy (mapping of states to actions). In Q-learning,
one attempts to learn a function mapping state-action pairs to expected future rewards, and uses that
to construct a policy which always takes the best action under the learned Q. Policy gradient methods
instead directly update the policy based on experience. Please refer to Sutton and Barto [1998] for
further detail.

When evaluating performance results, the authors found that Q-learners did not perform well when
learning from self-play, or in general when playing against other networks that are themselves training.
However, they found that Q-learners perform reasonably well against fixed opponents, such as the
in-game AI and a set of benchmark agents. This makes sense because Q-networks do not learn well
when faced with a non-stationary target–hence the experience replay dataset in Mnih et al. [2015].
When playing against a learning agent, even an experience replay dataset will not help, since the
opponent is still learning.

As our initial goal was to consistently succeed against the built-in AI under any amount of pertinent
delay, the Q-learner’s failings against learning agents were not particularly relevant. Therefore, due to
the model’s relative interpretability and availability of literature, we decided on training a successful
recurrent Deep Q-network. However, this failing proved to be an issue when attempting to bolster the
performance.

We decided to not only quantitatively, but to also qualitatively evaluate the policy that the network
learned. The authors found that against the in-game AI, Q-learners would consistently find the
unintuitive strategy of tricking the in-game AI into killing itself. Despite the ingenuity in the strategy,
we would expect this policy to not prove to be as successful against competent players, due to their
lack of predictability. Hence, we made it a point to not only evaluate on the quantitative reward
metric, but also on the qualitative “eye test.”

5 Hyperparameter Tuning

5.1 Exploration vs Exploitation

A common problem in reinforcement learning is finding a balance between exploration and exploita-
tion. To what extent should the agent take advantage of what it has already learned (exploitation) and
to what extent should it explore new possibilities (exploration)?

In each state (except a terminal state), an agent must select an action. The simplest way in which to
decide on an action to take is greedy selection: the agent always selects the action with the highest
state-action value. This method is pure exploitation. More sophisticated methods aim to achieve a
balance between exploration and exploitation.

4



ε-Greedy selection balances the pure exploitation approach with some exploration by introducing
an ε parameter that defines the small probability that the agent will choose uniformly between its
actions. With probability 1− ε, the agent will choose the greedy action.

An alternative is Boltzmann selection, which takes into account the relative value of the state-action
values. The probability of an agent selecting an action depends on how high that action’s value is
compared to the other state-action values. So, if one action’s value is much higher, that action is most
likely to be taken, but if there are two actions with high values, both are almost equally likely. The
hyperparameter here is the temperature parameter, which can be increased to increase the exploration
rate. Ideally, the temperature should be chosen to match the scale of the Q-values.

As the SSBM environment has such a large state space, it is prohibitive to exhaustively explore
the entire space. Therefore, both ε-Greedy selection and Boltzmann selection were used to further
explore promising actions, and tuning these parameters proved to be pivotal for converging to a
successful policy.

5.2 Discount Factor

In reinforcement learning, the discount factor controls how much the agent should consider future
rewards while learning. A very large discount factor will force the agent to only consider the effects
of its actions with respect to the reward one time step ahead, whereas a very small discount factor
will force the agent to consider how its current action will affect all future rewards. As SSBM is a
very fast-paced game, we decided that a larger discount–setting rewards 2 seconds into the future to
be worth half as much as rewards in the present–was more helpful than a smaller discount.

With the discount factor set so high, the discounted reward summation did not have to be prematurely
truncated for computational feasibility, and we were able to utilize rewards from the entire episode.

5.3 Weight Normalization

In Firoiu et al. [2017], the authors noticed that the practical success of first-order gradient based
optimization is highly dependent on the curvature of the objective that is optimized. If the error
surface is relatively flat, a larger step should be taken; if it is very curved, then a smaller step should
be taken. If the condition number of the Hessian matrix of the objective at the optimum is low, the
problem is said to exhibit pathological curvature, and first-order gradient descent will have trouble
making progress Sutskever et al. [2013].

There are several approaches for improving the conditioning of the cost gradient for general neural
network architectures. One is to explicitly left multiply the cost gradient with an approximate inverse
of the Fisher information matrix, thereby obtaining an approximately whitened natural gradient. This
approach was not taken as utilizing natural gradients significantly slows down unrolling the network.
Rather than dynamically constructing the graph at execution time, an unrolled length for a fixed
length needs to be created.

Alternatively, standard first order gradient descent can be used without preconditioning, but the
model parameterization can be changed to give gradients which approximate natural gradients.
Batch Normalization Ioffe and Szegedy [2015], a method where the output of each neuron (before
application of the nonlinearity) is normalized by the mean and standard deviation of the outputs
calculated over the examples in the minibatch, reduces covariate shift of the neuron outputs. The
authors suggest it also brings the Fisher matrix closer to the identity matrix. However, this method
introduces dependencies between examples in a mini-batch, making it unsafe to use in recurrent deep
reinforcement learning models.

Inspired by this approach, weight normalization Salimans and Kingma [2016] is a method which
reparameterizes the weight vectors in a neural network by decoupling the length of those weight
vectors from their direction. By reparameterizing the weights in this way, the conditioning of the
optimization problem and convergence of gradient descent is improved. Unlike batch normalization,
this reparameterization does not introduce any dependencies between the examples in a mini-batch.

We utilized weight normalization to lessen the significance of our initialization procedure. This
implementation vastly improved the learning process, by greatly speeding up convergence.

5



5.4 Recurrent Architecture

In Firoiu et al. [2017], the authors used two fully-connected hidden layers of size 128 for the neural
network approximating the Q function. Inspired by choices made in Hausknecht and Stone [2017], to
isolate the effects of recurrency, the architecture of the DQN was minimally modified, appending a
recurrent GRU cell to the last fully-connected hidden layer, prior to the output layer, which outputs a
Q-value for each action. With this update, learning under delay was stabilized.

5.5 Recurrent Updates

Again, inspired by Hausknecht and Stone [2017], bootstrapped random updates are performed.
Episodes are selected randomly from the replay memory and updates begin at random points in the
episode and proceed for a certain number of timesteps.

Sequential updates have the advantage of allowing the recurrent network to learn temporal depen-
dencies, but violate the DQN’s random sampling policy. In order to adhere to the policy, the GRU’s
hidden state is zeroed at the start of every update.

6 Performance Results

6.1 Quantitative

We trained our network at various amounts of delay against the built-in Level 9 (highest difficulty)
CPU. (See Figure 3). The rewards plateauing earlier as delay increases is expected, due to the
further separation of actions from rewards. However, more significantly, the training process of the
recurrent network is stable, despite the increase in delay, which is a vast improvement on the attempt
to condition on previous actions as done in Firoiu et al. [2017].

As generating experiences was a major bottleneck, many different emulators were run in parallel,
typically 50 or more per experiment, sending their agent’s experiences to the trainer. Under human-
like delay, 12 frames, training took a little over 16k episodes to reach positive rewards. 1

6.2 Qualitative

We viewed the agent trained under human-like delay play against the Level 9 CPU. Confirming our
interpretation of positive rewards, the agent performed well against the built-in AI. It was prepared to
react to the AI’s attacks, and once sent off-stage, was able to recover adequately well. Furthermore,
realizing that the AI was prone to approaching, the agent deployed slower, stronger attacks in order
to increase damage and ultimately knock out (KO) the opponent by sending them out of bounds. It is
possible, though, that the agent only performed slow attacks that took longer than the delay because
it could more easily predict the result of the attacks.

Despite being highly effective against the CPU, this strategy does not translate well to human-level
combat. As humans are much less predictable, the agent struggled. In order to rectify this, the agent
would have to be trained against a fixed set of strong enemies.

6.3 Strong Enemies

The goal of using strong enemies was to discourage the agent from employing degenerate strategies,
which would certainly not be optimal in human-level play. Ideally, the agent would generate
experiences against a competent human player, however obtaining the sufficient amount of experience
needed to learn through playing against one is practically infeasible.

Therefore, a compromise needs to be made between enemies. The agent should not train against weak
enemies, as its unoptimal strategies would continue to be encouraged. However, the agent might not
learn against the strongest of enemies, as the agent will be overpowered and not have the opportunity
to learn.

Therefore, an iterative training process was conducted (See Figure 4). The delayed agents trained by
the authors were surveyed, and were ranked based upon qualitative strength. It should be noted that

1Computing resources were provided by the Mass. Green High- Performance Computing Center.

6



Figure 3: Comparison of Recurrent DQN trained under various amounts of delay against the level 9
CPU: 3 frames (light blue), 6 frames (purple), 9 frames (dark blue), and 12 frames (yellow). Plotting
reward vs. training batches (in thousands).

these agents were only delayed by 2-4 frames. An agent playing the character “Peach” was deemed
to be the weakest, thus the agent was trained from scratch for many iterations against that agent, until
the rewards sufficiently plateaued. After that, we trained the agent against a relatively strong agent,
playing the character “Marth”, and the rate of reward increase was staggering.

However, after observing our agent play against the “stronger” agent, it was clear that the degenerate
strategy of continuously delivering slow, powerful attacks was still being used. Surprisingly, even
with this policy, the agent was able to hold its own against the “stronger” agent, who employed a
more conventional competitive strategy.

It was found that for nearly all of the delayed agents trained by the authors, this low-level strategy
worked, as the agents appeared to not have seen that strategy in their training experiences. Only the
strongest agent, which was the AI capable of beating the “world’s best” with its unrealistic reaction
speed, was able to successfully counter this approach. However, this AI appeared to be too strong for
the agent to train against.

Nonetheless, an attempt was made at training against that AI, and despite the large initial negative
rewards, and the slow training, the reward continues to increase. Further work would involve building
upon the output of this training process, in order to hopefully train a competitive recurrent agent. In
addition, we would like to investigate whether it would be possible for the delayed agent to learn
faster moves.

7 Discussion

Deep Reinforcement Learning has had widespread success in developing game-playing AIs. In Firoiu
et al. [2017], a Super Smash Bros. Melee (SSBM) AI was developed which succeeded at beating
the world’s best in the competitive scene. We advanced this work by stabilizing the training of the
agent under human-like delay. Through tuning a large set of Deep Recurrent Q-network (DRQN)
hyperparameters, particularly the exploration vs exploitation trade-off parameters, the discount factor,
the weight normalization method, and the recurrent architecture and update procedure, we were able
to successfully train under human-like delay. A recurrent agent was able to achieve positive rewards

7



Figure 4: Iterative training process of RDQN against strong enemies: Weakest (green), Strong (blue),
Strongest (purple) Plotting reward vs. iterations.

under human-like delay against the built-in AI, and when viewed, clearly succeeded in defeating the
AI. However, the strategy learned when playing against the AI was not successful against competent
human players. Further work would involve continuing the iterative training process against stronger
enemies.

The iterative training approach was necessary for improving the agent due to the inability of the
Q-learner to learn from self-play. Policy gradient methods were capable of learning from self-play,
but we were unable to successfully introduce recurrence to the system. We believe this is due to the
fact that the asynchronous experience generation training process violates the on-policy assumption
of the REINFORCE rule, and the effects of this are only exacerbated when previous memories are
stored. Resolving this issue and thus enabling training with self-play is an area of future work.

Furthermore, two other classes of approaches can be explored for resolving the action delay problem.
A model-based RL approach might be helpful. The agent could learn to predict future observations, so
that it would have a better sense of the environment at the time its delayed action would be executed.
Another approach would be to learn from demonstrations by obtaining samples of human play from
online communities, and training a model to accurately emulate their behavior.

Action Delay, and human-like play in general, is an issue that still has not been addressed by the deep
RL community, and remains an interesting and challenging open problem. By stabilizing the training
process for a recurrent agent in the SSBM environment, we hope to have contributed to the pursuit of
a solution.

Acknowledgments

We would like to thank Christopher Curro for advising the project, and Vlad Firoiu for providing
both computational resources and advice regarding the AI’s implementation.

References
V. Firoiu, W.F. Whitney, and J.B. Tenenbaum. Beating the World’s Best at Super Smash Bros. Melee

with Deep Reinforcement Learning. 2017.

M. Hausknecht and P. Stone. Deep Recurrent Q-Learning for Partially Observable MDPs. 2017.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. 1997.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. ICML, 2015.

Y. Li. Deep Reinforcement Learning: An Overview. 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015.

8



T. Salimans and D.P. Kingma. Weight Normalization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks. 2016.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V an Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, and M. Lanctot. Mastering the game of go with deep neural
networks and tree search. Nature, 529:484–489, 2016.

D. Steckelmacher and P. Vrancx. An Empirical Comparison of Neural Architectures for Reinforce-
ment Learning in Partially Observable Environments. 2015.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. ICML, pages 1139–1147, 2013.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An Introduction. MIT Press,
1998.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural
Computation, 6:215–219, 1994.

9


	Introduction
	Recurrent Neural Networks
	Recurrent Networks
	Vanishing (and Exploding) Gradients
	LSTMs and GRUs

	Resolving the Action Delay Problem
	Actor Critic vs Q-Learning
	Hyperparameter Tuning
	Exploration vs Exploitation
	Discount Factor
	Weight Normalization
	Recurrent Architecture
	Recurrent Updates

	Performance Results
	Quantitative
	Qualitative
	Strong Enemies

	Discussion

